Rare 'boomerang' earthquake is tracked across the Atlantic ocean

Rare 'boomerang' earthquake is tracked across the Atlantic ocean for the first time - shedding light on the kind of devastation these events could wreak on land With a boomerang earthquake the path of the quake runs back at a faster rate Researchers used underwater monitoring stations to track a earthquake in 2016  The team say this helped them get a better idea of how these earthquakes work This will allow them to create early warning systems to look for boomerangs 

By Ryan Morrison For Mailonline

Published: 11:14 BST, 11 August 2020 | Updated: 11:14 BST, 11 August 2020

2

View
comments

A rare type of earthquake known as a 'boomerang' has been tracked in the ocean for the first time, and it could help scientists know how they cause devastation on land.

Scientists from the University of Southampton and Imperial College London followed the path of this type of quake that 'runs back' after an initial rupture in the ground.

Earthquakes occur when rocks suddenly break on a fault – a boundary between two blocks or plates - and during a large quake the breaking can spread on the fault line. 

In the case of a boomerang earthquake the rupture initially spreads away from the original break but then turns and runs back the other way at higher speeds.

The strength and the duration of the rupture along the fault influences how much ground is shaken up on the surface - and the level of damage to buildings. 

Knowing the mechanisms of how faults rupture and the physics involved will help researchers make better models to predict future earthquakes, the team said. 

The Romanche fracture zone. A rare type of earthquake known as a 'boomerang' has been tracked in the ocean for the first time and it could help scientists know how they cause devastation on land.

The Romanche fracture zone. A rare type of earthquake known as a 'boomerang' has been tracked in the ocean for the first time and it could help scientists know how they cause devastation on land.

This is a perspective view of the rocks and earthquake along the Romanche faultline

This is a perspective view of the rocks and earthquake along the Romanche faultline

While large earthquakes occur on land and have been measured by nearby networks of monitors known as seismometers, these earthquakes often trigger movement along complex networks of faults, like a series of dominoes. 

This makes it difficult to track the mechanisms of how this 'seismic slip' occurs.

Under the ocean, many types of fault have simple shapes, so provide the possibility get under the bonnet of the 'earthquake engine'. 

However, they are far away from the large networks of seismometers on land. 

The team made use of a new network of underwater seismometers to track the Romanche fracture zone, a fault line stretching 560 miles under the Atlantic.   

In 2016, the team recorded a magnitude 7.1 earthquake along the Romanche fracture zone and tracked the rupture along the fault. 

This revealed that initially the rupture travelled in one direction before turning around midway through the earthquake and coming back.

During its 'boomerang' return run it broke the 'seismic sound barrier', becoming an ultra-fast earthquake, the researchers explained.

Only a handful of these earthquakes have been recorded globally. 

The team believe that the first phase of the rupture was crucial in causing the second, rapidly

read more from dailymail.....

PREV Archaeology: 700-year-old stone head thought to depict King Edward II unearthed ...
NEXT Xfinity's new mesh networking pods are twice as fast as the old ones