Father-of-eight invents an electric car battery to take drivers 1,500 miles ...

sonos sonos One (Gen 2) - Voice Controlled Smart Speaker with Amazon Alexa Built-in - Black read more

Imagine the satisfaction of driving your environmentally friendly electric car for 1,500 miles without having to stop to recharge the battery – a distance more than four times as far as the best and most expensive model currently on the road.

Under the bonnet is a revolutionary new type of battery which, unlike those used in conventional electric cars, can also power buses, huge lorries and even aircraft. What’s more, it’s far simpler and cheaper to make than the batteries currently in use in millions of electric vehicles around the world – and, unlike them, it can easily be recycled.

This might sound like a science-fiction fantasy. But it’s not. Last Friday, the battery’s inventor, British engineer and former Royal Navy officer Trevor Jackson, signed a multi-million-pound deal to start manufacturing the device on a large scale in the UK.

The father-of-eight battery inventor engineer, Trevor Jackson, 58 from Tavistock, Devon, who has signed a multi-million-pound deal to start manufacturing the device on a large scale in the UK

The father-of-eight battery inventor engineer, Trevor Jackson, 58 from Tavistock, Devon, who has signed a multi-million-pound deal to start manufacturing the device on a large scale in the UK

Austin Electric, an engineering firm based in Essex, which now owns the rights to use the old Austin Motor Company logo, will begin putting thousands of them into electric vehicles next year. According to Austin’s chief executive, Danny Corcoran, the new technology is a ‘game-changer’.

‘It can help trigger the next industrial revolution. The advantages over traditional electric vehicle batteries are enormous,’ he said.

Few will have heard of Jackson’s extraordinary invention. The reason, he says, is that since he and his company Metalectrique Ltd came up with a prototype a decade ago, he has faced determined opposition from the automobile industry establishment.

It has every reason not to give ground to a competitor that may, in time, render its own technology obsolete. Car industry sceptics claim Trevor’s technology is unproven, and its benefits exaggerated.

But an independent evaluation by the Government agency UK Trade and Investment said in 2017 that it was a ‘very attractive battery’ based on ‘well established’ technology, and that it produced much more energy per kilogram than standard electric vehicle types.

Game-changer: the aluminium-air fuel cell stores far more energy than a conventional battery

Game-changer: the aluminium-air fuel cell stores far more energy than a conventional battery 

Two years ago, Jackson claims, motor manufacturers lobbied the Foreign Office to bar him from a prestigious conference for European businesses and governments at the British embassy in Paris, which was supposed to agree a blueprint for ensuring all new cars are electric by 2040. The bid to exclude him failed. Now, with the signing of the Austin deal, it seems he is finally on the road to success.

He has also secured a £108,000 grant for further research from the Advanced Propulsion Centre, a partner of the Department for Business, Innovation and Skills. His technology has been validated by two French universities.

He says: ‘It has been a tough battle but I’m finally making progress. From every logical standpoint, this is the way to go.’

Jackson began working on new ways of powering electric vehicles after a distinguished engineering career. He worked for Rolls-Royce in Derby, helping to design nuclear reactors, then took a commission in the Royal Navy, where he served as a lieutenant on board nuclear submarines, managing and maintaining their reactors.

Before founding his own firm in 1999, he was working for BAE Systems, where he first started looking at alternative, green ways to power vehicles. By then he and his partner, Kathryn, were married. The couple have eight children, aged 11 to 27, and live in Tavistock, on the edge of Dartmoor in Devon.

In 2001 he began to investigate the potential of a technology first developed in the 1960s. Scientists had discovered that by dipping aluminium into a chemical solution known as an electrolyte, they could trigger a reaction between the metal and air to produce electricity. At that time the method was useless for commercial batteries because the electrolyte was extremely poisonous, and caustic.

After years of experimentation at his workshop in the Cornish village of Callington, Jackson’s eureka moment came when he developed a new formula for the electrolyte that was neither poisonous nor caustic.

‘I’ve drunk it when demonstrating it to investors, so I can attest to the fact that it’s harmless,’ Jackson says. Another problem with the 1960s version was that it worked only with totally pure aluminium, which is very expensive.

But Jackson’s electrolyte works with much lower-purity metal – including recycled drinks cans. The formula, which is top secret, is the key to his device.

Technically, it should be described as a fuel cell, not a battery. Either way, it is so light and powerful that it could now be set to revolutionise low-carbon transport, because it supplies so much energy.

Jackson gave me a demonstration. He cut off the top of a can of Coke, drained it, filled it with the electrolyte, and clipped electrodes to it, powering a small propeller. ‘The energy in this will keep the propeller spinning for a month,’ he said. ‘You can see what this technology could do in a vehicle if you scale it up.’ Following last week’s deal with Austin, that is exactly what is about to happen. Three immediate projects are about to go into production.

The first is to manufacture for the Asian market some

read more from dailymail.....

Get the latest news delivered to your inbox

Follow us on social media networks

NEXT UN keeps Darfur peacekeepers but hopes for their departure